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Laminar heat- or mass-transfer processes are theoretically investigated for two- 
dimensional spatially periodic suspensions of circular cylinders, each member of 
which rotates steadily about its own axis under the influence of an external couple. 
The novelty of the ensuing convective-diffusion phenomena derives from the absence 
of convective motion at  the suspension lengthscale (the ' macroscale '), despite its 
presence a t  the interstitial or particle lengthscale (the ' microscale'). The latter fluid 
motion consists of a cellular vortex-like flow characterized by closed streamlines. 
These periodically closed streamlines give rise to a situation in which there exists no 
net flow at the macroscale. The resulting macroscale transport of heat or mass thus 
proceeds purely by conduction, the rate being characterized by a tensor diffusivity - 
dependent upon the angular velocity of the cylinders. Matched-asymptotic-expansion 
methods together with generalized Taylor dispersion theory are used to calculate this 
macroscale conductivity in the dual limit of large rotary PBclet numbers and small 
gap widths between adjacent cylinders. This prototype study illustrates the fact that 
the usual separation of transport processes into distinct convective and conductive 
contributions is not generally a scale-invariant concept ; that is, microscale convec- 
tional contributions to the transport of heat or mass are not generally representable 
by corresponding macroscale convectional contributions to the transport. Possible 
applications of the analysis exist in the area of enhanced conduction rates in 
ferrofluids or other dipolar fluids rotating relative to a fixed external field (or 
conversely). 

1. Introduction 
An earlier (Brenner 1984), purely fluid-mechanical study of the rotation about 

their own axes of the individual particles in an otherwise quiescent laminar 
suspension revealed the existence of a suspension-scale antisymmetric stress tensor 
arising from the body couples required to sustain the steady rotation. The novelty 
of that calculation lay in the fact that momentum could be transported despite the 
suspension being macroscopically at rest. The present paper represents a companion 
study of the transport of heat in such apparently quiescent suspensions. The 
prototype example studied herein shows that the macroscopic transport process is 
purely conductive - as certainly would be expected of a system at rest - but possesses 
an effective conductivity that is functionally dependent upon the angular velocity 
l2 of the suspended particles about their own axes relative to the suspension as a 
whole. 

t Permanent address : Department of Civil Engineering and Applied Mechanics, McGill Univer- 
sity, Montreal, P.Q., Canada H3A 2K6. 
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This phenomenon violates the so-called ‘principle of material frame indifference ’ 
(Truesdell & Toupin 1960), as was already shown to occur for its momentum-transport 
counterpart (Brenner 1984). The apparent violation is rationalized by the fact that, 
whereas the macroscale motion of the continuum is everywhere zero, the same is not 
true of the microscale motion. As a consequence, the usual subdivision of transport 
processes into convective and conductive contributions cannot be regarded as a 
scale-invariant concept. Rather, microscale convection and conduction here coalesce 
into a single, purely conductive transport mechanism at the macroscale. The latter 
process is governed by a suspension-scale form of Fourier’s law, but with an angular 
velocity-dependent effective conductivity. Thus, in contrast with conventional, 
forced-convection heat-transferprocesses, the convective contribution to the transport 
rate is here implicit rather than explicit in the analysis. We coin the term ‘micro- 
convection ’ to describe this phenomenon. Equivalently, ‘macroconvection ’ is 
absent. 

Fusion of separate microscale convection and conduction processes into a single 
macroscale conduction- or dispersion-like process is characteristic of Taylor- 
dispersion phenomena (Taylor 1953 ; Aris 1956). Indeed, generalized (Brenner 
1980a, b, 1982; Brenner & Adler 1982) Taylor-dispersion theory will be employed to 
bring the problem solution to fruition. 

Kinematically, our prototype example involves the two-dimensional, spatially 
periodic, vortex-like flow engendered by a square array of almost-touching parallel 
circular cylinders, each rotating steadily about its symmetry axis in a Newtonian fluid 
under the action of an external couple exerted upon it from outside of the system. 
This spatially periodic suspension geometry permits highly concentrated systems to 
be analysed in a rigorous manner; furthermore, the ‘almost-touching ’ lubrication 
limit enormously simplifies the requisite fluid-mechanical and concomitant con- 
vective-diffusive Taylor-dispersion (Brenner 1980 b ; Brenner & Adler 1982) calcu- 
lations. For the case of a square array these equations are solved analytically for 
various parametric combinations of rotary PBclet number Pe 4 1,  non-dimensional 
gap width e < 1 ,  and solid-fluid conductivity ratio K .  Numerical values of 
the effective dispersivity dyadic are provided for the dual cases Pes2 >> 1 and 
Peee = O(1). These reveal that the dispersivity in the plane of flow grows like Pe!, 
whence this effective conductivity can be made arbitrarily large by increasing the 
particle rotation rate. Large transport rates thus become realizable in practice despite 
the absence of any suspension-scale motion. 

2. Flow between rotating cylinders 
Figure 1 represents a longitudinal view of a unit cell characterizing the indefinitely 

extended, two-dimensional, spatially periodic suspension. The identical circular 
cylinders (radii R), assumed to be of infinite length with longitudinal axes directed 
normal to the plane of the paper, are arranged with their centres fixed at adjacent 
points of a square lattice; 8 is half the minimum gap between adjacent cylinders, 
whereas D is the magnitude of the angular velocity of each cylinder relative to the 
fixed lattice. Interstitial fluid surrounding the cylinders is assumed to be incompressible 
(density p )  and Newtonian (viscosity p).  The velocity in the fluid then satisfies the 
Naviel-Stokes and continuity equations together with the zero-normal-velocity and 
no-slip boundary conditions on the cylinder surfaces. In addition, in order to ensure 
no net fluid motion we require that tjhere be no flux of fluid through the gaps between 
the cylinders. 

In the limit E 3 6 / R + 0 ,  lubrication theory (Batchelor 1967) provides an asym- 
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ptotic approximation of the local flow field in the gap region. This will be found and 
matched onto an ‘outer solution’, valid in the fluid away from the gaps. As in 
figure 1, choose a rectangular Cartesian coordinate system (2, y) with the velocity 
components (u, w). Upon rendering distances dimensionless with R and velocities 
with RQ the proper asymptotic scaling is 

(5,Y) = ( B - b ,  Cly),  (2.1) 
while i t  may be seen that (u, w) must be expanded as 

u = U+O(s) ,  2) = d[?7+0(€)], 
such that barred quantities are of order unity in the gap. In terms of the scaled 
coordinates 5, y, each cylinder surface is described by 

5 = f [1+~5?+0(€)]. (2.3) 

Provided that Re& 4 1 (with Re = ReSlp/p the Reynolds number), the non- 
dimensional Navie-tokes and continuity equations become, to terms of the lowest 
order in B .  

and 

7 FLM 184 
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with ji = .&p/pQ the scaled pressure. These are to be solved subject to no-slip 
boundary conditions on the cylinder surfaces, which here take the forms 

( U , V ) = ( - l , - Z )  o n y = l + + ? ,  (2.7) 

( U , V )  = (1 ,  - 2 )  ony=-(1++Z2).  (2.8) 

The zero-net-flow symmetry condition 

through the gap must also be imposed. 
These equations possess the solution 

u = -y( 1 +gi?)-', 
V = -$Z[ 1 + p ( 1  + + z y ] .  

$ = -1 4 x  -2 +y2(2+22)-1 

(2.10) 

(2.11) 

(2.12) 

Equivalently, the stream function 3 is 
- 

to within an arbitrary additive constant. Here, U = -a$/ay and V = ?)$/a%, so that 
by (2.2), if the unscaled velocity is written as u = -a$/ay and v = a$-/ax, we see that 

II. = $+O(s ) .  

As in figure 1, the streamline passing through the origin 0 is seen to be a dividing 
streamline. Though the solution (2.10)-(2.12) is valid only within the gap region, it 
nevertheless reveals the dominant features of the global flow field. In the gap itself 
the fluid motion is a 'saddle' flow, with fluid above the origin moving to the left and 
that below to the right. In  the regions bounded between each cylinder surface and 
the dividing streamline the fluid particles traverse closed trajectories. Similarly in 
the midregion, symmetrically surrounded by the dividing streamlines of the four 
cylinders, a closed-streamline flow must necessarily exist - corresponding to a 
'vortex' rotating in a direction opposite to that of the cylinders themselves. 

The dividing streamline itself is described by = 0, whence 

y=+28z(l+gP):  (2.13) 

along this streamline. The two limiting domains 

z+o, g"+(2- t z+  ...) (2.14) 

and lzl+a3, y"+(;z+g+ ...) (2.15) 

prove important in later discussion. In particular, comparison of (2.15) with (2.3) 
shows that as one moves out of the gap the distance of the dividing streamline from 
the cylinder surface approaches (in the scaled coordinates) a value of + (cf. figure 2). 
Also, (2.14) reveals that the slope with which the dividing streamline approaches the 
origin in the scaled coordinates is & 2-;. 

In  the gap, instead of using the scaled Cartesian coordinates (%,ij), we can use 
new scaled coordinates ( p ,  8) defined in terms of the polar coordinates ( T ,  0)  shown in 
figure 3 as 

r - i  - 1 X - e  

P = E 3  e=2 A . 

Since z = +cosO, y = ( ~ + E ) - T  sin0, 
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FIQURE 2. Dividing streamlines. 

FIGURE 3. Two-dimensional Cartesian (zl, z2), circular cylindrical ( r ,  B ) ,  and 
intrinsic streamline ( p ,  8 )  coordinates. Regions d ,  I, W. 

we can, by using (2.1), express (5,y) in terms of ( p , B )  as 

z = (e-4 + € 4 ~ )  sin (cia), 

y =  (€- l+l)-(€- l+p)  COS(€%), 

5 - e+ O(e) ,  

y -  (l-p+p)+o(S). 

or, for E + O ,  as 

1-2 
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Thus, in the gap, 3, given by (2.12), may be written as 
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- (1 -p+@)2  $=-P+ +O(E). 
(2 + $2) 

(2.16) 

On moving out of the gap as $++ 00 (and 5-+ a), 3 takes the form 

3 - [(+-p)+0(8-2)]+0(€). (2.17) 

This inner lubrication-theory solution (2.16), valid in the gap, must be matched onto 
an ‘outer’ solution valid away from the gap. However, we shall not require the details 
of this ‘outer’ flow field per $8, but only the flow close to the cylinder surface. We 
thus perform only a local analysis of the ‘outer’ solution near the cylinder surface 
r = 1, and demonstrate that this can be rigorously matched onto the ‘inner’ 
lubrication solution (2.16). In order to do this we use ( p ,  6 )  as independent variables 
for this ‘local outer’ expansion. Since, on the cylinder surface r = 1,  we require that 

we obtain, by expanding $(r ,  6 )  about r = 1, 

$(r,O) = + ( l , O ) + ( r - l )  - (1,6)+O(r-1)2 = a-(r- l )+O(r- l )2 ,  

where a is a constant. This value of @ at this order represents a uniform flow locally, 
and is therefore automatically a solution of the Navier-Stokes equation. Thus, for 
the ‘local outer’ solution, we obtain 

3 = b-P+O(s ) ,  (2.18) 

where b is a constant. For matching onto the ‘inner’ lubrication solution we require 
that (2.18), when expressed in terms of ( p ,  a), has the same value for s+O as 3 given 
by (2.17). Thus 

giving the ‘local outer’ solution as 

ar 

b = l  
2’ 

3 = (f-P)+O(s).  (2.19) 

Consequently, the limiting streamline $ = 0 away from the gap is given by 

or, equivalently, 

so that this limiting streamline is situated at  a constant distance of & from the 
cylinder surface (see figure 2). Also, from (2.19), the velocity field away from the gap 
(but close to the cylinder surface) is 

Ve = 1 + 0 ( s 2 ) ,  W, = 0(e2), (2.20) 

so that this describes the flow on and near the dividing streamline. 

substitution of (2.13) into (2.10) and (2.11), yielding 
Behaviour of the velocity along the dividing streamline may be found by 

E ( 3  = 0) = f5(2+52)f,  

.($ = 0) = -Z(1 +P) (2+57-’. 

(2.21) 

(2.22) 
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Again, in the two limiting domains i t  is found that 
(u,v) - ( T ~ + z ,  -@I as Z+O (2.23) 

and (U,V) N ( T i ,  -Z)  as 151+00, (2.24) 

while outside the gap the velocity on the dividing streamline is given by 

so that it is the same as that at the cylinder surface. The details of the flow in the 
outer region away from the cylinder walls will not be required. However it is to be 
noted that it may be shown (using symmetry and the fact that the creeping-flow 
equations are linear) that beyond the dividing streamline (away from the cylinders) 
all streamlines are closed, whence that the general flow pattern is expected to be like 
that shown in figure 1. 

Summarizing our kinematical conclusions, closed streamlines exist adjacent to the 
cylinders as well as in the midregion away from the cylinders. Outside the gap region 
the streamline separating these domains lies at a dimensionless distance @ from each 
cylinder surface, with the dimensionless velocity being unity (at lowest order) on that 
streamline. 

(v,,vg) - (0,1), 

3. Dispersion in periodic suspensions 
The assumed spatial periodicity of the velocity field renders the current problem 

soluble by generalized Taylor dispersion methods (Brenner 1980b; Brenner & Adler 
1982) applied to such systems. Within that framework, application of a moment 
analysis to the microscale convective-diffusion equations governing transport of a 
tracer particle in a spatially periodic medium leads to the conclusion that the 
macroscale tracer transport can itself generally be described by a convective-diffusion 
equation (with position- and time-independent phenomenological coefficients), asym- 
ptotically valid for long times. Thus, provided that the times of interest greatly exceed 
the microscale (i.e. unit-cell) diffusive ‘equilibration ’ time, the theory provides 
expressions for the mean velocity and Taylor dispersivity describing the macroscale 
transport. 

In  applying existing dispersion theory (Brenner 1980b; Brenner & Adler 1982), 
we consider the elementary case of a pointsize, neutrally buoyant tracer particle 
characterized by a partition coefficient of unity - the latter describing the equili- 
brium tracer distribution amongst the fluid and solid phases of the suspension. Such 
circumstances equally well describe heat transfer. As such, the Taylor dispersivity ’ 

dyadic eventually obtained in a mass-transfer context is applicable to more general 
types of transport processes. 

In  present circumstances it is readily proved (Brenner 1984) that the macroscale 
velocity is zero. Explicitly, 

This is an immediate consequence of two facts: (i) the zero-net-fluid-flow condition 
(2.9) existing across the boundaries of each unit cell of the suspension, which gives 
rise to the zero volume-average conditiont 

i7* = 0. (3.1) 

ttdr = 0 

t In the interests of clarity the reader should note that dimensional quantities are used in 
(3.2)-(4.4), whereas in $2  and in (4.5), aa well as in most subsequent equations, non-dimensional 
quantities are used. Exceptions to the latter rule will be obvious. 
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within the fluid region r E rf ; (ii) a zero-net-solid-phase-velocity condition arising 
from the fact that each cylinder rotates about a fixed point, and hence necessarily 
possesses zero volume-average translational velocity, i.e. 

I, Q x r d r  = 0 (3.3) 

within the cylinder interiors r E rs. 
Since (3.1) shows macroconvention to be absent, macroscale transport necessarily 

occurs exclusively by macroconduction ; however, microconvection will be seen to 
play a dominant role in determining the effective conductivity of the suspension, at 
least at the large PQclet numbers subsequently considered. 

The generic expression (Brenner & Adler 1982) for the suspension-scale Taylor- 
dispersivity dyadic here reduces to the form 

D* = 7, [.I, (VB)t*(VB)dr+DsJrs (VB)t-(VB) dr]. (3.4) 

The vector microfield B at point r satisfies the steady-state vector convective-diffusion 
equations 

u - V B  = DV2B (rEr,) ,  (3.5) 

r P V B  = DSV2B (rErs),  (3.6) 

B continuous across 1.9, , 

with us = S x r the solid velocity, together with the cylinder surface boundary 
conditions 

(3.7) 

Dn*VB(,,,i, = Dsn.VBls,,i, on S,, (3.8) 

wn = +a, (3.9) 

and unit-cell surface boundary conditions 

[VB] = 0. (3.10) 

In this formulation the B(r) field is defined at all points r E r, (r,  = r, @ rs) within 
a unit cell. The unit cell, whose volume is T ~ ,  consists of solid (s) and fluid (f) domains 
rs and r,, possessing respective scalar diffusivities Ds and D to tracer transport. 
Further, S, denotes the surface of the cylinders with n the unit outward-drawn 
normal. Appearing in (3.9) and (3.10) is the double-bracketed operator [ ], which 
denotes the ‘jump’ in the value of its argument between geometrically equivalent 
points lying on opposite unit-cell faces. 

The solution of equations (3.5)-(3.10) is unique only to within an arbitrary additive 
vector constant (Brenner & Adler 1982). This is of no physical import as (3.4) only 
involves derivatives of B. Furthermore, if the solid phase is non-conducting (Ds = 0) 
the proper normalization for (3.4) is no longer 1 / ~ ~  but rather l / T f .  Correspondingly, 
in such circumstances the microscale ‘equilibration ’ time - assumed small compared 
with times of interest - is then the characteristic time for the tracer to sample only 
the fluid points r E r, ; formerly it was the time required to sample all the points, r E ro. 

Subsequent portions of this paper are concerned with the actual computation of 
6* in several circumstances of interest. The f i s t  of these corresponds to the limiting 
case where the solid phase is impermeable to tracer transport. (non-conducting 
cylinders). 
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4. Transport within the fluid phase only 
For the degenerate case Ds = 0 the B field is only defined within the fluid- 

containing region rErf of the unit cell. Therein i t  satisfies the steady-state con- 
vective-diffusion equation 

v -VB = D V2B, (4.1) 

together with the particle and cell boundary conditions 

n * V B = O  ons, ,  (4.2) 

Write B = B, il + B, i, + B, i, with (i,, i2, i,) unit vectors along the right-handed 
Cartesian coordinates depicted in figure 3. This permits independent equations to be 
set forth separately for each component Bg of B. Specifically the transport equation 
governing B = B,/R may be written in the non-dimensional form 

v -  V B  = Pep' VaB, (4.5) 

subject to n * V B = O  onS,, (4.6) 

-2(1+E) (j = 2), 
(j= 1,3), 

and [VB], = 0 (j  = 1,2,3),  

with Pe = R W / D  the rotary PBclet number. Here, for example, 

[BIZ = B(x,,2(1 z , ) -B(z , ,  0, z 3 ) .  

For Pe B 1 the characteristic convective tracer transport time is much less than 
that for molecular diffusion. It is apparent in this limit that, away from (boundary- 
layer) regions where second derivatives are important, (4.5) reduces to 

V-VB = 0 (4.10) 

to terms of lowest order. The latter implies that B is constant along streamlines, 
whence B is necessarily of the intrinsic form B = f($) with $ the two-dimensional 
stream function. In regions of closed streamlines it can further be shown that the 
diffusion term in (4.5) has the effect of rendering B independent of the coordinate 
transverse to the streamlines. Together with (4.10) this leads to the conclusion that 
B is necessarily constant in the entire closed-streamline region. The proof entails 
showing that f($) = 0 in such regions. 

To this end choose an arbitrary closed streamline $ = constant, which may 
either completely enclose fluid or surround a cylinder. Integrate (4.5) over the entire 
fluid area A($) interior to that streamline to obtain 

V*[uB-Pe-'VBIdA = -Pe-' fc(+) v*VBdl = 0. (4.11) 

Use has been made of the divergence theorem in conjunction with boundary condition 
(4.6) ; v is the outward normal to the closed streamline, while curve C($) denotes the 
closed streamline. Introduce B = f($) into (4.11) to obtain 

JAW4 

(4.12) 
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Since, by definition, v = V+/l V+ I (or the negative thereof), the above integrand is 
non-zero and of the same algebraic sign along the entire integration contour. Thus 

f(9) = 0, (4.13) 

as was to be demonstrated. This equation necessarily obtains throughout the entire 
closed-streamline region, since the particular streamline chosen for its proof was 
arbitrary. Equations (4.10) and (4.13) imply that B is constant along and across the 
streamlines ; B is therefore necessarily constant within the closed-streamline domains 
of the flow. This conclusion is not novel; other contexts (Acrivos 1971; Frankel & 
Acrivos 1968; Cox, Zia & Mason 1968; Torza et al. 1971; Rhines & Young 1983) 
involving the steady-state convective-diffusion transport of passive scalars in regions 
of closed streamlines lead to the same condition. 

In  the present circumstances the flow pattern consists entirely of closed-streamline 
regions separated by dividing streamlines. Jump condition (4.7), however, precludes 
the possibility that B possesses the same constant value throughout the whole domain 
r ~ r ~ .  Rather, in a later section it will be demonstrated that B attains a different 
constant value in the central vortex region than in the closed-streamline regions 
adjacent to the cylinders. Hence, large gradients in B must obtain in the vicinity of 
the dividing streamline, in which region neglect of the right-hand side of (4.5) is no 
longer justified. It therefore becomes necessary to derive ‘inner’ equations, valid in 
the boundary layers straddling the dividing streamlines. As D* depends upon 
gradients of B [cf. (3.4)] it is to be expected that the major contribution to 6* arises 
from such boundary layers. This warrants a detailed inner-field analysis, which is 
performed in the next section. 

5. Inner analysis 

figure 3 as 
Equation (4.5) may be written in the cylindrical polar coordinate system shown in 

In these coordinates, and away from the gap, the dividing streamline is located at 
r = 1 ++. In  order to retain the diffusion terms in the boundary layer straddling the 
dividing streamline, we therefore define scaled streamline coordinates ( p ,  s) by the 
relations 

r = 1 +++Pe-fp, (5.2) 

s = re. (5.3) 

Substitution into (5.1) in conjunction with the facts that vo - 1 and v, - 0 outside 
the gap thereby yields 

a2B aB 
(5.4) - 

ap2 as 

to terms of lowest order in 8 and Pe-f. Within the boundary-layer region of thickness 
O(Pe-f) straddling the dividing streamline, transverse diffusion is therefore balanced 
by convection along the dividing streamline. It will further be supposed that Pe-f 4 e,  
whence the boundary layer remains well away from the cylinder surfaces. 

Recapitulating, the prior analysis reveals that, in the limiting case 

Pee2 % 1, (5.5) 
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L et 

FIGURE 4. Gap regions. 

(5.4) obtains in region V (figure 3) separating areas d ,  adjacent to the cylinders, from 
region I, the vortex region. In both of these regions B possesses constant, position- 
independent values. However, (5.4) has been derived only for the domain away from 
the gap ; within the gap the possible existence of other convective-diffusive regimes 
must be recognized. 

Specifically, referring to figure 4 and recalling that the dividing streamline 
approaches the origin with a slope of order id (figure 2), it  is found that the boundary 
layers V of two adjacent cylinders merge at a distance of order Pe-i s-4 from the origin 
centred in the gap. Within that region (labelled 8) the proper scaling for the gap 
coordinates is thus 

= (Petdx, Peiy). (5.6) 

In  conjunction with (2.1), (2.2), (2.10) and (2.11) this provides the pertinent velocity 
normalizations 

The (x, y)-space convective-diffusion equation 

(a,@) = (Pdm,  Peidv) - (-8, -29). (5.7) 

governing the B-field thereby adopts the form 

to terms of lowest order in the parameters Pe-i, d and s-2 Pe-'. This equation reveals 
convection to be the dominant mode by which B is transported in region 8. This 
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FIQURE 5. Intrinsic streamline coordinates (g, fi  in the grtp region. 

contrasts with the comparable conclusion [cf. (5.4)] reached for the boundary-layer 
region V. 

The domain labelled 9 in figure 4 provides a transition region between V and 8. 
Here, the x-coordinate is O(d), as too is the length of the gap region [cf. (2.1)]. 
However, in order to find the properly scaled equation for B we must consider soaled 
coordinates along (&) and transverse (Petri to the dividing streamline. Toward 
this end consider the coordinate system depicted in figure 5. Point (z,y) is given 
functionally in terms of p" and the corresponding point (x,,y,) on the dividing 
streamline by the pair of relations 

and 

(5.10) 

(5.11) 

Concurrently, point (x,, yo) is uniquely determined by specifying 3 through the 
definitions 

(5.12) 

in which the integrands are to be evaluated on the dividing streamline. Make use of 
(2.13) in conjunction with (2.1) to evaluate (9,n from the above in terms of (Z,@. 
This yields 

s" - 5, (5.13) 

(5.14) 

to terms of lowest order in 8. 

Coordinates (s ,p)  = (&, Pe*n become rectilinear (Cartesian) in the dual limit 
E + O  and P e +  co as may be verified from (5.13) and (5.14). Consequently, the B-field 
equation (4.5) adopts the form 

Pe-' ¶ €  -1p" - 2-+5( 1 + 4 z2)t - jj 

(5.15) 
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correct to terms of dominant order. Intrinsic velocity components (up, v,) appearing 
in (5.15) may be evaluated from (2.10) and (2.11) via the coordinate transformations 

q z ,  y )  = u(z, y )  cos q5 + d x ,  Y )  sin 4, (5.16) 

v8(x, y )  = u(z, y )  sin q5 -v(z, y )  cos 9. (5.17) 

Angle q5 is identical with that appearing in (5.10) and (5.11) (figure 5) .  Evaluation of 
the right-hand sides of (5.16) and (5.17) furnishes the proper normalizations of the 
respective velocity components. Explicitly, 

(w,, up) = (c8, Pe-’Pe-tCP), (5.18) 

wherein 5, = -2fZ(1+22)” and Cp = 2-’P(l +!jP)-fp are of order unity. Sub- 
stitution into (5.15) yields at lowest order 

aB ,aB 
-3(l +is”) -+p - = 0 in 9, 

a3 ap (5.19) 

governing the transport of B within the indicated region. 
These observations demonstrate that in both gap regions d [cf. (5.9)] and 9 [cf. 

(5.19)] the dominant transport mechanism is convection, whence B is constant along 
the streamlines. As such, along the dividing streamline P P  in figure 4 the value of 
B remains constant on each side of the origin. However, since the flows from both 
P and P’ converge at the origin, and since the value of B at P’ differs from that at 
P, large gradients in B necessarily obtain at the origin, as well as on the dividing 
streamline QQ’. Hence, the regions 9 and B shown in the figure require further 
elaboration. 

In  the areal domain 9 assign the symbol A to the transverse coordinate scaling 
in (5.15). An order-of-magnitude balance of diffusion a2B/i3p2 in the transverse 
direction against convection Pe w8 aB/as along the dividing streamline, considered in 
conjunction with the orderings v, - 0(1) and s - O(d), thereby yields A = Pe-t ei. 
Hence, the sub-boundary-layer region 9 is of width Pead extended along the 
dividing streamline QQ’ in the gap. Within 9, diffusion in the transverse direction 
is once again important. The equation governing transport in the latter domain may 
be derived as follows: Choose coordinates s* = e-4s and p* = Pefs-ip in accordance 
with the proper lengthscales in 9. Observe then that the velocity components scale 
according to 

(5.20) 

Substitute these results into (5.15) to eventually obtain 

describing transport in this region at lowest order. 
In  the region Y near to the origin the flow differs from that which obtains along 

the remainder of domain 9. Upon consideration of the slope of the dividing stream- 
line near the origin, this saddle-flow region Y can be shown to be of width Pe-te-1 
in the x-direction (as depicted in figure 4). If z* and y* are the coordinates used in 
this region, so that 

(z*, y * )  = (Peteiz, Pete-fy), (5.22) 

the corresponding velocity components may be shown to scale according to 

(u*, w*) = (Petdu, Peteiv). (5.23) 
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Number of 
regions Diffusion 

RRgion within cell Description important 1 Area IVBI lVBlexarea 

1 4 1 )  41) d 4 Bconstant - 

1 4 1 )  4 1 )  a? 1 B constant - 

w 4 Boundary layer; Yes Ped Pet Pe! 

9 8 Boundary layer; No P e t $  Pet Pet Et 
constant velocity 

variable velocity 
8 4 Saddle-flow region No Pe-Ie-1 pet s-! 

9 4 Boundary layer: Yes P e t  d Peke-; PetA 
variable velocity 

9 4 Saddle-flow ‘point’ Yes Pe-’ Pete-: €4 

TABLE 1. Orders of magnitude of I VB l2 x area for the distinct flow regions 

Substitution of these results in (5.8) yields the lowest-order form 

(5.24) 

Actual dimensions of the various regions depicted in figure 4 have been exaggerated 
for pictorial clarity. This is evidenced by the existence of the inequalities 

Pe-iei 6 Pef < E < €4 (5.25) 

and Pe-t E - !  6 Pef e-4 6 €4 (5.26) 

in conjunction with inequality (5.5). 
Prior to deriving the detailed solutions of the B equations for the various regions, 

it is instructive to consider an order-of-magnitude analysis of the respective contri- 
bution of each such region to the expression (3.4) for the Taylor dispersivity. In 
present circumstances the solution for B, yields the component 

(5.27) 

of the complete dispersivity dyadic, in which area A, denotes the (two-dimensional) 
domain occupied by fluid within the unit cell. The length to be assigned to the unit 
cell along the x3 direction (i.e. normal to the plane of the paper in figure 3) is without 
consequence since B, is independent of x3. 

Equation (5.27) may be written in the dimensionless form 

2 D22 = - (VB)*(VB)dA,  
Ap 

(5.28) 

whose integrand is amenable to order-of-magnitude analysis. Table 1 tabulates the 
various regions composing the domain r E rf, along with their respective contributions 
to the dispersivity (5.28). Scrutiny of the entries in the last column of that table, 
together with inequalities (5.25) and (5.26), leads to the conclusion that the dominant 
contribution to the dispersivity arises from regions ‘3. Consequently, the Taylor 
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dispersivity D&, will exhibit the functional dependence 

- E 2  N pei 
D 

(5.29) 

in the dual limits Pe B 1 and E 4 1, with Pe e2 % 1. Contributions arising from the 
other regions are obviously negligible in comparison with Pek 

As regions ‘X (of which there are four in the unit cell) provide the major 
contributions to the dispersivity, it proves sufficient for purposes of the dispersivity 
calculation only to solve (5.4) for B(s,p) in each of the boundary-layer regions % 
of the unit cell. Prerequisite to this solution is establishment of the proper 
boundary/matching conditions that need be imposed to determine B uniquely. 
Derivation of these necessitates certain symmetry arguments, discussed in the 
following section. 

6. Boundary/matching conditions 
Equations (4.5)-(4.9) governing the microfield B are invariant under the trans- 

formation (B, r )  -+ ( - B, - r ) ,  where r is the two-dimensional position vector 
measured from a centre of symmetry, such as 0’ or 0” in figure 6. As such, it follows 
that B(T’) -B(O’) = -B(W’)+B(O’). A relationship of the same form can be 
obtained for the corresponding doubly primed points if we correspondingly denote by 
B(0”) the constant value of B on the surface of the cylinder centered at 0”. (Note 
that in the present circumstances B is not defined within the solid phase.) This leads 
to the pair of relations 

B(T’)+B(W’) = 2B(O’), (6.1) 

B(T”)+B(W”) = 2B(O”), (6.2) 

for any generic pair of points (‘I”, W’) or (T”, W”) symmetrically disposed about 0’ 
or 0”. 

In reference to figure 6, B was shown to attain constant values in each of regions 
a, 4, d2, 4, d4. That B is determined only to within an arbitrary additive constant 
allows us to arbitrarily set B(dl) = 0. Jump conditions (4.7) and (4.8) then imply that 

B ( 4 )  = B(d2) = 0 (6.3) 

and B ( 4 )  = B(dJ = 2 (6.4) 

B ( a )  = 1. (6.5) 

to terms of dominant order, whereas symmetry result (6.1) dictates that 

On the dividing streamline PQRSP in figure 6, choose s = 0 at point P. In 
conjunction with definitions (5.2) and (5.3), points Q, R and S are respectively given 
by s = in:, n: and $n: to dominant order. Hence, the governing transport equation for 
boundary-layer domain %‘ becomes 

PB aB 
- ( O < s < 2 x , - m < p < < ) .  

ap2 as 

Since, by the symmetry result (6.1), 
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I 

FIGURE 6. Symmetry conditions. 

it suffices to determine B only for 0 < s < x. In  the latter domain the matching 
conditions implied by (6.3) and (6.5) adopt the forms 

lim B = 1, 

lim B = 0. 

P’- 

p - -  m 

To match the results obtained for B through the gap regions, where (6.6) does not 
hold continuously, we draw upon our previous observation that transport in the latter 
region is dominated by convection (regions d and B), with B therefore constant along 
streamlines. Contributions from regions 9 and 9, in which diffusion plays a role, are 
negligible on the lengthscales p - O ( P e d )  of interest. Thus, referring to figure 7, we 
obtain B(U’) = B(U) = 2- B(U),  B(V’) = B(V) and B(W”) = B(W”’) = - B(W’), in 
which use has been made of the symmetry conditions about points 0’ and 0”, along 
with B(0’ )  = 1 and B(0”)  = 0. Jump condition (4.8) further implies B(T) = B(T’) and 
B(W) = B(W”). Taken together these results yield 

B ( x - , p )  = 2-B(O+,p)  ( p  > O ) ,  (6.10) 

B ( x - , p )  = m+ ,P I  ( p  < 01, (6.11) 

(6.12) 

(6.13) 

in the limits where the points approach the respective origins. Functions f(a+) and 
f(a- ) denote the respective. right and left limits off as its argument approaches a. 
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Unit cell 

FIGUFCE 7. Gap continuity conditions. 

Matching conditiQns (6.8)-(6.13) provide a complete set of conditions to determine 
B(s, p)  in the domain bounded by 0 < s < x and - 00 < p < 00. It proves convenient 
in deriving this solution to define a quantity I3 which is a periodic function of s with 
period IC. In the interval 0 < s < x it  is given by 

B(s, p )  = 2B(s, p )  - 1. (6.14) 

However, outside the range 0 < s < x the value of B given by (6.14) differs from 
the true value of B. For instance, though for x < s < i x  the true value of B is 
that on the line RS in figure 7, the corresponding value of B given by (6.14) is that 
on RN. 

Upon using (6.14) to write the set of equations (6.6), (6.8)-(6.13) in terms of B, 
it is seen that the resulting equations defined on -m < s < co remain invariant 
under the transformation (B; s,p)-+ (-B; s + i x ,  -p) .  Consequently 

B(s+*IC,p) = -B(e, - p )  (-03 < 8 < m). (6.15) 

Moreover, B is everywhere continuous, except at the discontinuities depicted in 
figure 8, for which 

B(s+ ,p )  = 2 - B ( s - , p )  (s = nx, p > 0) (6.16) 

and B(s+,p)=-2-- -B(s- ,p)  ( s = n x + i x , p < O ) ,  (6.17) 

with n any integer. Equations (6.14) and (6.15) imply that 

B ( s + f x , p )  = 1 -B(s, - p )  (0 < s < in). (6.18) 

The latter in conjunction with (6.7) permits the solution for B (and thus B) within 
the subinterval 0 < s < ~ I C  to suffice for establishing B everywhere in the unit cell. 

The h a 1  form of the governing transport equation within boundary layer %? 
thereby becomes 

(6.19) 
aB a% ( o <  < 
-=- \ s \ i x , - m < p < m ) ,  
as apa 
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- Continuous I I Discontinuous Discontinuous 

B-t -  1 

FIGURE 8. Schematical representation of discontinuities (shaded lines) in B. 

subject to matching conditions 
lim B =  1 ,  

lim B = - I ,  
P+W 

f--W 

B(O+,p)  = 2+B(+n-,  - p )  (p > O ) ,  

B(O+,p) = -B($-, - p )  (p  < 0). 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Equations (6.20) and (6.21) result directly from substitution of (6.14) into (6.8) and 
(6.9); (6.22) derives from (6.15) and (6.16), whereas (6.23) is a consequence of the 
continuity of B a t  s = 0 for p < 0, together with the result (6.15). 

Matching conditions (6.20)-(6.23) uniquely determine the solution of (6.19) in the 
domain 0 < s < in, - 00 < p < 00. The detailed B-solution of these is derived in the 
following section, along with the concomitant value of the dispersion coefficient D:2. 

7. Solution 
Equation (6.19) is formally identical to the one-dimensional heat-conduction 

equation with s the time-like coordinate. The Green function G(s, p ; s‘, p’) ,  defined 
as the solution of (6.19) at (8, p) for an initial Dirac delta-function disturbance S( p -p’ )  
at s = s‘, takes the form 

G ( s , p ;  s’,p’) = [4x(s--9’)]3 exp [ -- ;:!:!;] 
in which s > 8‘ (as s is time-like). Definef(p) as 

-B($--, - p )  =f(p) .  
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This results in 

(7.3) 

in accordance with matching conditions (6.22) and (6.23). For 0 < s < ;-x the Green 
function (7.1) then furnishes the relation 

expressing the solution of (6.19) in terms of its ‘initial’value B(O+ ,p ) .  This equation 
may be rearranged into the form 

When f ( p )  is known this furnishes the function B everywhere within the domain of 
interest. In  ( 7 4 ,  

r z  
#(z) = erf z = 2 x 4  J exp ( -%) d t  (7.6) 

0 

and (7.7) 

To determinef(p) substitute (7.5) into (7.2) to obtain the integral equation 
m 

f ( p )  = -1+#[(2x)-tp]+(21rZ)--f f ( p ’ )  e x p [ - G ]  sgnp’dp’, (7.8) 

to be solved for f( p )  subject to the asymptotic conditions 

limf(p) = 1, lim f ( p )  = -1, (7.9) 
6-m P+-m 

derived from (6.20) and (6.21). The change of variable p = (21t)fz together with the 
definition 

2h(4 = 1 - f ( P )  (7.10) 

simplifies (7.8) to the form 

h(z) - 1 = n-4 h(z’) exp [ - (z + x ’ ) ~ ]  sgn 2’ dz’, (7.11) 
J -m 

which is to be solved subject to the dual requirements 

lim h(z) = 0, 

lim h(z) = 1. 

z-tm 

2-t--00 

(7.12) 

(7.13) 

Equation (7.11) represents a singular, inhomogeneous, linear, Fredholm-type integral 
equation of the second kind. Its solution h(z) eventually furnishes B(s,p) via (7.5) 
and (7.10). 

To dominant order, the area A, occurring in (5.28) is 

A, = [2(1 + s ) ] ~ - - K ( ~ ) ~  N 4--x. (7.14) 
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Similarly, to dominant order the integral appearing in that expression is given by 

(VB)*(VB)dA. (7.15) 
region V 

(VB)'(VB) dA - 
In cylindrical polar coordinates the above integrand may be written as 

(i3B/ar)2 + (r-l aB/88)2 

or equivalently, upon transformation via (5.2) and (5.3), as 

Pei ( ~ B / + I ) ~  + Pea (aB/aS)2. 

Neglect of terms of orders E and Pe-4 thereby yields 

Equations (6.7), (6.14) and (6.15) eventually reduce the above to the form 

(7.16) 

(7.17) 

Integration by parts with respect to p ,  use of the governing equation (6.19), and 
subsequent integration by parts over s - performed successively in that order - 
eventually yields 

Q) 

D& - (-2)-,(4--x)-l PeiD dp[B2( i~- ,p) -~z(O+,p) ] .  (7.18) 

In conjunction with (7.2), (7.3) and (7.10) the latter ultimately adopts the canonical 
form 

J-, 

(7.19) 

with h(z) with solution of (7.11). 

that B, is merely a -in rotation about the x, axis of the B, field, i.e. 
Remaining components of the Taylor-dispersion dyadic may be obtained by noting 

B,(s,p) = B,(s++-x,p). (7.20) 

This immediately yields D:, = D&., whereas cross-components D?, and Dzl are given 

(7.21) 

However, use of symmetry condition (6.7) to effect the s-integration over (O,X), 
together with the facts that 

B,(s,p) = 1 -B,(s, - p )  (0 < < in )  

B,(s,p) = 1 +B,(s, - p )  (in < s < R), and 

ultimately shows that 
q, = DZ, = 0. 

(7.22) 

(7.23) 

(7.24) 

[Equations (7.22) and (7.23) derive by using (6.7) and (6.18) in conjunction with 
(7.20).] 

Finally, the B, component of the microfield B can be determined by arbitrarily 
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- 10 - 5  0 5 10 

FIGURE 9. Solution h(z) of integral equation (7.11) satisfying (7.12) and (7.13). 
X 

selecting a cell of unit length in the x, direction. It is straightforwardly demonstrated 
that the latter possesses the solution 

B, = -2, (7.25) 

to within an arbitrary additive constant. This yields 

(7.26) 

- 
and 

isotropic, and hence of the generic form 

D,*, = D:l = IT:, = Q2 = 0. (7.27) 

The foregoing results show the Taylor-dispersivity dyadic to be transversely 

D* - Dfi3i3+D;(/-i3i3),  (7.28) 

with i, a unit vector parallel to the cylinder axes and / the dyadic idemfactor. 
Respective components parallel and transverse to the axes possess the asymptotic 

forms Df/D = 1 (7.29) 

and (7.30) 

in the dual limits Pe+ 00 and E+O,  with Pee2 % 1. That the Taylor dispersivity is 
transversely isotropic is evident from symmetry considerations. 

To derive the requisite numerical coefficient in (7.30), the integral equation (7.11) 
was solved numerically (Nadim 1984) for h(x), resulting in the functional dependence 
displayed in figure 9. Numerical integration of these data subsequently gave 
1; h(z)dx = 0.3766, leading to the expression 

DT/D = 4.40 Pet. (7.31) 

Extension of the above analysis to encompass the more general case where the 
cylinders (solid phase) are themselves conductors is carried out in the next section. 
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8. Non-zero solid-phase diffusivity 
Denote by K the solid/fluid diffusivity ratio D s / D .  For times exceeding 

max ( R 2 / D ,  R2 /Ds)  

the Taylor dispersivity may be calculated from (3.4) jointly with (3.5) to (3.10). In  
the limit K + O ,  (3.4) remains properly normalized for 'long' times (t % R 2 / P ) ,  
whereas the result obtained in the previous section (based on the normalization 1 / ~ ~ )  
can be interpreted as the proper 'short-time' solution ( R 2 / D  Q t 4 R2/DS).  

As B = constant satisfies the governing solid-phase equation (3.6) and boundary 
condition (3.8) in the limit Pee2 1, the previous solution remains valid with B 
adopting the same constant values within the cylinders as in regions 4-d4. [Refer 
to figure 6 and (6.3), (6,4).] Consequently, with proper normalization it is found that 

n! = T , ' ( h f + D s T s )  = D[l+(K-l)$] (8.1) 

and, in the Pee2 9 1 limit, 

(8.2) 

As before, h(x) is the solution of (7.11). 
Suppose that, while Pe-t 00 and s+O, Pee2 = O(1) rather than (5.5). I n  these 

altered circumstances bondary-layer regions Q? no longer remain distant from the 
cylinder surfaces. Regions then withdraw into the solid phase, whereupon flux 
boundary condition (3.8) can no longer be satisfied by taking B = constant within 
the cylinders. I n  the degenerate case K = 1 ,  however, the solid- and fluid-transport 
equations become identical, whence the same governing set of equations and 
boundary conditions now obtain in regions V as in the preceding section. Therefore, 
in the limit Pee2 - O(1) with K = 1 ,  (8.1) and (8.2) are once again obtained for the 
parallel and transverse dispersivity components. 

These limiting cases prove useful in establishing the consistency of the sub- 
sequent Pee2 - O(1) solution for a general value of K .  Moreover, (8.2) is of further 
interest in establishing that the transverse dispersivity component is independent of 
Ds in the limit Pe e2 9 1 .  

Consider the situation Pee2 - O(1) with K arbitrary. Insofar as the PBclet number 
based upon the solid-phase diffusivity simultaneously remains large (i.e. Pe/K % l ) ,  
the dominant contribution to the Taylor dispersivity again arises from regions W (see 
table 1). We further require that Pee2 be much larger than E (i.e. Pee 9 1 )  since 
otherwise contributions from domains d and 3 will become comparable to or larger 
than that from V. The definition = 2B- 1 thereby yields the following transformed 
set of differential equations and mat'ching conditions, in analogy with results derived 

iJ* I - - (27t Pe): D Jom h(x) dx = 0.944 Pea D .  

previously: 

Iim B =  I ,  

Iim B=- l ,  
P== 

(I+- m 
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G(s, p ; a’, p’) = [ 4 r r ( e - ~ ’ ) ] f { a  exp [ - ( p  - ~ ’ ) ~ / 4 c ( a -  B’)] + b exp [ - (dp + ep’ +fPei ~)~ /4c (s -s ’ ) ] }  

Coefficient 

Domains a 

p‘ > -p* 1 

P > -p*, 
p‘ > -p* 0 

p < -p*,  
p’ < -p* 0 

and 
p > -p*,  

p‘ < -p* K-: 

p < -p*,  

and 

and 

and 

b C d e f 
l.4 1 1 1 1 
1 +Kt 

K: K 1 1 1 
Kf(l+Kt) 

TABLE 2. Green function for equations (8.3)-(8.4) satisfying equations (8.7)-(8.8) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

B ( O + , p )  = 2 - B ( w - , p )  ( p  > 0). (8.12) 

Here p* = +(PeEZ)i, (8.13) 

so that p = -p* denotes the cylinder surfaces (8.13) [cf. (5.2)]. 
Insofar as condition (6.7) remains valid, we need only solve for B in the domain 

0 < s < x. However, the invariance result (6.15) no longer obtains [since (8.8) does 
not transform into itself under the latter transformation]. As such it is not possible 
to further restrict the calculations to the region 0 < s < +K, as WELB previously done. 
Such minor technical differences notwithstanding, however, subsequent steps of the 
present solution are completely akin to prior calculations for the K = 0 case. 

The Green function G(s,p; s’,p’) satisfying (8.3) and (8.4) together with (8.7) and 
(8.8) may be found by the method of images (Appendix A), the result being tabulated 
in table 2. Define 

B(0-A =f(p) (8.14) 

and recall the x-periodicity result 

(8.15) 

(8.16) 
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corresponding to (8.11) and (8.12). With B(O+,p)  given in terms off(p) via (8.16), 
the Green function furnishes the relation 

(8.17) 

Applying gap conditions (8.9) and (8.10) to the latter provides B(! jx+,p) .  In turn, 
this renders B(n - , p )  expressible as 

(8.18) 

Inasmuch as the right-hand side of (8.18) can be written as an integral functional 
of f ( p ) ,  the x-periodicity requirement (8.15) provides an integral equation for f ( p ) .  
Explicitly, define the three functions 

(8.19) 

p’) = J W ,  p ; in ,  p”) @(in, p”;  0, p’) dp”, 
0 

and introduce the transformation g( p )  = f( p )  - 1 to obtain 

(8.21) 

r m  

The latter constitutes an integral equation for g( p ) .  Despite its more complex form, 
it is of precisely the same type as encountered previously [cf. (7.1 l)]. In consequence 
of matching conditions (8.5) and (8.6), the two limiting conditions 

lim g ( p )  = 0, 

lim g(p) = -2, 

P-m 

P-“ 

(8.23) 

(8.24) 

need to be imposed. The functional forms of the integrals defined in (8.19)-(8.21) have 
been obtained explicitly from table 2.  They are tabulated in Appendix B. In view 
of the dependence of the Green function (table 2) upon parameters K and p*, 11-13 
also exhibit such dependence. 

In  analogy with (7.15)-(7.17) the transverse component of the Taylor-dispersivity 
dyadic here takes the form 

(8.25) 

Several integrations by parts in conjunction with (8.3), (8.4) and (8.8) eventually 
render the right-hand side of (8.25) expressible explicitly in terms of f (p) .  The 
transformation g( p )  = f( p )  - 1 together with the demonstrable fact that 

(8.26) 
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I I I I 
0 -  

K = 4.0 
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- 10 - 5  0 5 10 

P 

FIQURE 10. Solution g(p)  of integral equation (8.22) scltisfying (8.23) and (8.24). 

- 6: 
P d D  

1 .oo 

0.75 

o.sor- P* = O.I5 1 
0 2 4 6 

K = P / D  

FIGURE 11. Transverse disperaivity aa a function of K at parametera of p*. 

[deriving from the dual conditions that G(+lc+d,p’; 8 ,p)  is independent of 8 and 
G(+lc, p’ ; 0, p)  = a(+%, p ;  0, p’) ] ,  then yields the final expression 

Together with the relation 

(8.27) 

(8.28) 
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0 2 4 6 

p * =  tPeC 

FIGURE 12. Transverse dispersivity as a function of p* at parameters O f  K .  

these furnish the transverse and parallel components of the macroconductivity dyadic 
(7.28) for the case Pee2 - O(1) and arbitrary K .  The dependence of (8.27) upon the 
two parameters K and p* is implicit in the functional dependence of both I , ( p )  and 
g ( p )  upon each of these. 

Subject to auxiliary conditions (8.23) and (8.24), the solution g ( p )  of the integral 
equation (8.22) was effected (Nadim 1984) by numerical means in the parametric 
ranges 0.05 < K < 5 and 0.15 < p* < 5.0. In conjunction with (8.13) the latter 
corresponds to 0.09 < Pee2 < 100. Typical solutions g(p)  are depicted in figure 10 
for several parametric choices. Subsequent integration eventually provided the 
coefficient required in (8.27). Numerical values of DT/D Pe: are shown in figures 11 
and 12 as functions of parameters K and p*. Results for the two limiting cases K = 1 
and Pee2+ 00 (i.e. p*+oo) obviously accord with the prior result (8.2). 

9. Discussion 
Consistent with the absence of flow at the macroscale [cf. (3.1)], steady-state 

heat transfer in the suspension of rotating cylinders is constitutively described 
by a Fourier-type conduction equation possessing a macroconductivity dyadic D*. 
Though macroconvection as a formal heat-transfer mechanism is absent in this 
example, microconvection effects arising from the interstitial fluid motion are never- 
theless implicitly evidenced through the dependence of the conductivity dyadic upon 
the internal rotary PBclet number. Indeed, measurements of DT offer a possible 
way of indirectly measuring the relative suspension-particle internal spin rate a. 
Knowledge of this difficult-to-measure kinematical variable is important in rheological 
theories of so-called micropolar fluids (Eringen 1964, 1966 ; pertinent literature up 
to 1984 is reviewed by Brenner 1984). 

That the transverse conductivity DT is functionally dependent upon a has 
several implications. First, as described above, since internal particle rotation is not a 
directly observable kinematic property, such reference-frame-dependent transport 
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measurements provide an indirect way of measuring Q. Even in the absence of a 
quantitative theory such as that outlined above, the mere existence of a functional 
dependence is prima facie evidence of the polarizable nature of the macrocontinuum. 
Furthermore, since the effective conductivity of such a polar suspension can 
obviously be varied at will by merely changing the rotation speed of the apparatus 
housing the suspension (Brenner 1984), applications are easily envisioned in which 
the same medium can play opposite roles as insulator or conductor according to needs. 

In  addition to displaying unusual heat- and mass-transfer characteristics, our 
dipolar suspension exhibits equally striking momentum-transfer properties in the 
form of antisymmetric stresses (Brenner 1970, 1972; Brenner & Weissman 1972; 
Brenner & Condiff 1974; Jansons 1983; Brenner 1984). In particular, Cauchy’s 
moment-of-momentum equation (Dahler & Scriven 1961, 1963; Aris 1962) for the 
microstress tensor T here adopts the degenerate form (Brenner 1970, Brenner & - 
Weissman 1972) 

corresponding to the neglect of rotary inertial effects and the absence of couple-stress 
effects (Condiff & Dahler 1964)). Absence of the latter is a consequence of the 
prevailing geometric and kinematic homogeneity at the macroscale. Here G is the 
volumetric external body-couple density, and T, = - E: T the pseudovector invariant 
of the suspension-scale stress tensor; E is the unit alternating isotropic triadic 

The existence of body couples reflects the torques supplied by an external agency 
to the cylindrical particles, such torques being required to maintain these particles 
in a state of permanent rotation. In the limit B + O  a lubrication-theory estimate is 
easily found for the hydrodynamic couple (per unit length in x3 direction) exerted 
by the fluid on each cylinder. The latter is necessarily equal in magnitude and opposite 
to the couple supplied by the external agency. Thus, for particles rotating in the chiral 
sense depicted in figure 3, the external couple L (per unit length) acting upon an 
individual cylinder is 

L-- i34n - pR2Q. (5)” 
Division by the area 4R2 of a unit cell (containing one particle) yields 

as the external body-couple density per unit volume. 

linear constitutive equation (Condiff & Dahler 1964) 
The spin viscosity 1: is defined as the phenomenological coefficient appearing in the 

T,  =c;(w-Jh), (9.4) 

with w = +(V x u), half the suspension-scale vorticity pseudovector (relative to the 
same observer measuring O), and KJ the internal spin field, given by dd = -i3 Q. Thus, 
if we observe that in our prototype example the suspension-scale velocity is zero 
(requiring that w = 0), we obtain from (9.1), (9.3) and (9.4) the expression 

for the spin-viscosity coefficient in the lubrication limit. Similar estimates are 
available (Zuzovsky , Adler & Brenner 1983) for comparably concentrated Bpheriml- 
particle suspensions. 
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The symmetric portion of the suspension-scale deviatoric stress tensor T is zero in 
the present case, whence the macrostress is purely antisymmetric. That any stress 
whatsoever exists in a mobile continuum 'at rest' is remarkable, much less that this 
is antisymmetric. As discussed by Brenner (1984) this further implies, inter a&, that 
a net couple must also be exerted by the container walls bounding the suspension, 
and that this wall couple must be equal in magnitude and opposite in direction to 
the sum of all the external couples acting upon the microscopic particles. 

During this research R. G. C. was on sabbatical leave from McGill University. 
He wishes to thank the Chemical Engineering Department at M.I.T. for their 
hospitality during his stay. 

Appendix A 
In  accordance with (8.3) and (8.4) we seek the steady spatial distribution B 

resulting from a unit disturbance at  (s ' ,~ ' )  satisfying (8.7) and (8.8). To that end 
introduce the changes of variable 

This transforms both (8.3) and (8.4) into the form 

( 

Conditions (8.7) and (8.8) now take the forms 

aB - a2B 
as ap"2 
-- - 

E continuous 

and 

where p" = 0 corresponds to the position of the fluid-solid interface. 
Equation (A 3) is formally identical with the one-dimensional heat-conduction 

equation. For the case where the unit source is at ij' > 0 the fundamental solution 
is 

The second term in (A 6) arises from an image source at p" = -a. 
Conditions (A 4) and (A 5 )  require that 

a+$ = y ,  (A 8) 

a-$ = d y ,  (A 9) 

which together yield $ =  ( i - d ) ( i + K i ) - l a  (A 10) 

and y = 2(1 +d)- 'a .  (A 11) 
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Normalization ( I_”, B(s, p )  dp = 1 )  requires that 

a = (4n)-f. (A 12) 

Substitute into (A 6) and (A 7)  the coefficients (A 12), (A 10) and (A l l ) ,  and use 
transformations (A 1)  and (A 2) to obtain the entries appearing in the first two rows 
of table 2. For the case p” < 0 a similar development furnishes the coefficients 
appearing in the remaining rows of that table. 

Appendix B 

d 1--Kf p+2p* 
p > -p*, m-& [&I +m + [WI ; 

TABLE 3. Integral ( -  co, 0) of Green function. +(z) is the error function given by (7.6). 

P’-P* 

p’ > -p*, 

and 

P > -P* 

p‘ < -p*, 

and 

P < - P *  

p’ > -p*, 

and 

P < - P *  

and 

P’ < -p*, 
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P ' - P *  

P' > -p*,  

and 

P > - P *  

and 

P' < - P*,  

P <-P* 

P' > - p * ,  

and 

P < - P *  

P' < -p*,  
and 

TABLE 5. Integral (0, m) of a product of Green functions 

P > -P* 

p' > -p*,  

and 

P > -P* 

and 

P' < -p*,  

P < - P *  

P' > -p*,  

and 

P < -P* 

P' < -p*,  

and 

1 - d  
411 
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